離心式風機的使用和操作離心式風機啟動前的準備關閉調節風門,關閉離心式風機的進出風門;手動盤車,檢查風機各部件的間隙,轉動葉輪與機殼看是否有摩擦;聯軸器,紹興軸流通風機皮帶輪防護護照安裝到位;軸承箱油位是否在滿足運行時的潤滑油位;對有水冷卻軸承的風機,要檢查冷卻水管的供水情況是否良好;電動確定風機的轉向,軸流通風機廠家同時要檢查有無漏水漏油現象及震動、異響、異味等現象。離心式風機的啟動啟動離心式風機(注意運行是否平穩);離心式風機啟動后逐漸開大風門直到實際的生產需要的風量;開大風門時注意電機的運行電流,防止風門開度過大造成風機過載;啟動后要檢測風機軸承溫度,軸承溫升不能超過現場周圍環境溫度的40 度;離心式風機在運行過程中的檢查聽離心式風機運轉是否平穩、有無異聲或摩擦;
對于防爆的不銹鋼離心式風機,由于此類不銹鋼離心式風機所輸送的氣體介質是一氧化碳、石油氣、化學氣、介質中所含有的易燃以及易爆等成分,此類風機的轉子若使用一般的碳素鋼制作時,由于部件之間所產生的碰撞現象,或是轉子內部吸進的砂粒以及鐵屑等雜質。會引起火花,進而致使氣體的燃燒與爆炸等造成的事故。為防止事故的發生,當不銹鋼離心式風機在輸送易燃易爆等級別較低的氣體介質,風機殼可以使用不銹鋼板進行制作,而風機的葉輪可以使用鋁材料進行制作。這時鋁葉輪與鋼板殼在摩擦或是碰撞的過程中,一般情況下不會出現由于火花而引起的事故。
離心式風機葉輪葉輪的組成: 葉輪是風機的主要部件,葉輪由葉片、連接和固定葉片的前盤和后盤、輪轂組成。離心式風機的葉片型式根據其出口方向和葉輪旋轉方向之間的關系可分為后向式、徑向式、前向式三種。后向式葉片的彎曲方向與氣體的自然運動軌跡完全一致,因此氣體與葉片之間的撞擊少,能量損失和噪音都小,效率也就高。前向式葉片的彎曲方向與氣體的運動軌跡相反,氣體被強行改變方向因此它的噪音和能量損失都較大,效率較低。徑向式葉片的特點介于后向式和前向式之間。離心式風機集流器集流器的組成:離心式風機的集流器裝置在葉輪前,它使氣流能均勻地充滿葉輪的入口截面,并且氣流通過它時的阻力損失是最小的。
說到離心風機,首先就要先簡單解釋下靜壓、動壓與全壓概念。離心風機靜壓表示空氣的稀薄程度,如越靠近高溫風機處,靜壓絕對值越大;篦冷機固定篦板冷卻風機的靜壓往往超過10kPa。靜壓可以為正值,即容器內密度大于大氣壓;可以為負,即容器內密度小于大氣壓。離心風機動壓表示空氣的流動速度,在相同溫度下流體動壓越大,流動速度越快,相同管徑時流量也越大。大部分情況下可以這么理解,動壓→流量,動壓大,流量就大。動壓永遠為正值。全壓即是靜壓與動壓的代數和。對于一臺離心風機,其全壓為出口全壓-入口全壓,對于高溫風機、窯頭窯尾排風機來講,入口全壓為負值,出口全壓為正值。簡單來說,一個離心風機有效功率為:全壓與流量的乘積。也就是說,對于一臺風機,當其電機電流越大時,全壓或者流量必然有其一增大,或者兩者都增大。
軸流風機葉片通常都是流線型的,設計工況下運行時,氣流沖角(即進口氣流相對速度w的方向與葉片安裝角之差)約為零,氣流阻力小,風機效率高。當風機流量減小時,w的方向角改變,氣流沖角增大。當沖角增大到某一臨界值時,葉背尾端產生渦流區,即所謂的脫流工況(失速),阻力急劇增加,而升力(壓力)迅速降低;沖角再增大,脫流現象更為嚴重,甚至會出現部分葉道阻塞的情況。軸流風機的失速特性是由風機的葉型等特性決定的,同時也受到風道阻力等系統特性的影響,動葉調節軸流式送風機的特性曲線如圖2所示,其中,鞍形曲線M為送風機不同安裝角的失速點連線,工況點落在馬鞍形曲線的左上方,均為不穩定工況區,這條線也稱為失速線。
采用軸向風壓負壓慢速通風方式降低顆粒溫度,可達到預期的降溫效果。在軸流風機負壓作用下,來自外界的冷空氣從顆粒反應器表面緩慢均勻地進入顆粒反應器。冷空氣在顆粒反應器中停留時間長,顆粒與冷空氣之間有充分的熱交換。試驗前小麥倉庫平均谷物通風溫度下降21.6℃至2.4℃,通風后下降19.2℃,溫度下降1.8℃。軸流式風機功率小,風壓大,氣流通過糧食堆速度慢,糧食水分不會被帶走,糧食水分損失少。此外,顆粒反應器內的氣流流動較慢,不易引起顆粒反應器內水分轉移過程中的水分分層現象。因此,軸向風壓和負壓慢速通風有利于糧食水分的保持和安全儲存。通風前含水率為11.9%,通風后含水率為11.8%,含水率損失僅為0.1%。
集科技開發、產品設計、制造銷售、安裝服務為一體的現代化工科型經濟實體
掃一掃 手機站